0907432 Computer I <u>Midterr</u>	Design (Spring 2009) <u>n Exam</u>								
Instructions : Time 45 min. Closed books & notes. No calculators or mobile phones. No questions are allowed . Show your work clearly and write your final answer in the <u>underlined space</u> . For multiple-choice questions, put an "x" mark for the best answer. Every problem is for 2.5 marks.									
Q. The most important thing that the computer designer focuses of Throughput Price-Performance Usability Scalability	on when designing a personal computer is:								
Q. A processor takes 2 seconds to execute the floating-point oper operations. To achieve an overall speedup of 2 on this progra enhanced by a factor of: ∞ Speedup = 1 / (1-f + f/s) f = 2 / (2 + 2) = 0.5 2 = 1 / (1-0.5 + 0.5/s) 1 + 1/s = 1 1/s = 0 s = ∞	rations of a program and 2 seconds to execute the rest m, the execution of the floating-point operations should be								
 Q. The minimum number of instructions needed by an accumula C are variables in the memory):3 Id B mul C st A Q. The instruction below uses the memory auto-increment addre 	tor computer to evaluate " $A = B * C$ " is (assume that A, B, and ssing mode, which is not supported in MIPS. In the space								
add r1, (r2)+	add r1, 0(r2) addi r2, 4 or								
Q. The number of anti-dependencies in the following MIPS code	e sequence is:2								
add r1, r2, r3 addi r2, r1, #1 r2 with sub r3, r1, r2 r3 with bne r1, r3, Skip	r2 in add r3 in add								
 Q. A processor supports multi-cycle operations as described in the stages, but the floating-point operations go through stages A1 to determine the <u>minimum</u> number of cycles needed to execut stalls and register flags to solve data hazards. The number of 1 2 3 4 5 6 7 8 9 0 	he class. This processor has the standard F, D, E, M, and W A, A2, A3, and A4 instead of the E stage. Use pipeline diagrams te the following code sequence. Assume that the processor uses cycles is:14 (state any assumption you make) 1 2 3 4								
add.d f0, f1, f2 F D A A A A M W sub.d f3, f0, f4 F D A A I assumed that the register file supports writing and read	AAMW ing in the same cycle (split-cycle operation).								

mı	ion has not finish	ed.	n station 'Mu	II and the se		ion to `Add1	Also assur	me that the f	irst
	ul.d f	2, f0, f8	3						
SI	ub.d f	4, f2, f6	5						
Comple	te the following r	eservation st	ation entry.						-
	Reservation	vation Busy	On	Dest.	Source Register		Source RS		
	Station		° r		Fj	Fk	Qj	Qk	
	Add1	Yes	sub.d	f4		Reg[f6]	Mul1		
A branc	n history table wi pp executed one it nditional branch that you have an 16	th n=1 is bett eration <u>that is 10 tin</u> (m, n) correl	Loop e mes not take	ntn n=2 in th executed two n then 10 tir predictor wh	e following c iterations nes taken ere m=2, n=2	Case: Loop exc None of 2, and $k=11$.	ecuted 10 ite the above The size of t	prations his predictor	in Kbi
Assume static sc any stag	that the followin theduling as the e ge takes one cycle	g code seque xample descr . The numbe	nce is execute ibed in the cl r of cycles ne 1 2 3 4	ed by a super ass where the eded to exec 4 5 6	scalar proces e processor h ute these inst	ssor of degree as an integer ructions is: _	e 2. Assume ALU unit a 6	that this proo nd FP unit. A	cessor 1 Assume
11	w R	2, 0(R1)	FDEM	4 W					
1	N R	3. 4(R1)	 	- M W					
ac	dd.d F	0, F2, F4	FD2	A M W					
Assume reorder	that the followin buffer. The proce the number of cyc	g code seque essor has addi cles needed to	nce is execute ress calculation issue and co	ed by a specu on unit, memo mmit these i	lative proces ory access ur	ssor. This pro	ocessor uses er ALU unit.	reservation s . Each stage	tations takes or
cycle. T	v R N R dd R	2, 0(R1) 3, 4(R1) 4, R2, R3	I Z S A I E M V I E N S I -	4 5 6 7 8 V C 4 W C E W C the space pro-	ovided to the	right, use pij	peline sched	uling to rewr	ite this