Embedded Systems (0907333) Homework 2

Every Problem 10 Points
Problem 1: Write an assembly program for the PIC 16P84A given the following specification:

- Port A is input port and Port B is output port.
- The microcontroller should continuously copy the least significant four bits from Port A to the most significant four bits of Port B, respectively.
- The least significant four bits of Port B should equal RA4.

Your program should include all needed port initialization.

```
;
    #include p16f84A.inc
;
org 00
;Initialise
start bsf status,rp0 ;select memory bank 1
    movlw B'00011111'
    movwf trisa ;all port A bits input
    movlw 00
    movwf trisb ;all port B bits output
    bcf status,rp0 ;select bank 0
;
;The "main" program starts here
loop swapf porta,0 ;move port A to W with swapping
    iorlw B'00001111' ;preset three bits
    btfss porta,4 ;skip if RA4=1
    andlw B'11110000' ;clear least significant 4 bits
    movwf portb ;move W register to port B
    goto loop
    end
```

Problem 2: How long does it take to execute the following subroutine on a PIC 16P84A running at an external clock of 800 kHz ?

```
delay
    movlw D'100'
    movwf delcntr1
del1
    nop
    decfsz delcntr1,1
    goto del1
    return
```

Internal frequency $=800 \mathrm{kHz} / 4=200 \mathrm{kHz}$
Instruction cycle $=1 / 200 \mathrm{kHz}=5 \mu \mathrm{~s}$
The loop takes 4 instruction cycles
Time $=100 * 4 * 5 \mu \mathrm{~s}=2 \mathrm{~ms}$

Problem 3: Write an assembly program for the PIC 16P84A given the following specification:

- Port A is an output port.
- The external interrupt is enabled on RB0.
- The main routine has two modes.
- Depending on the mode, the main routine increments or decrements the contents of the working register and outputs these contents to Port A.
- The interrupt handling subroutine toggles the mode of the main routine between the increment mode and the decrement mode.
Your program should include all needed port and interrupt initialization and ISR context saving.

```
;
    #include p16f84A.inc
;
flag equ 10 ;flag for mode: 0 inc, 1 dec
;
    org 00
    goto start
;
    org 04
    goto Int_Routine
;
start
    bsf status,rp0 ;select bank 1
    movlw 01
    movwf trisb ;bits 1-7 output, bit 0 input
    movlw 00
    movwf trisa ;porta bits all output
    bcf status,rp0 ;select bank 0
    bsf intcon,inte ;enable external interrupt
    bsf intcon,gie ;enable global int
;
wait
    btfss flag,0 ;skip if Bit 0 is 1
    addlw 01 ;increment
    btfsc flag,0 ;skip if Bit 0 is 0
    addlw B'11111111' ;decrement
    movwf porta
    goto wait
;
    org 0080
Int_Routine
    comf flag,1 ;complement flag
    bcf intcon,intf ;clear INTF
    retfie
    end
```

Problem 4: Write an assembly program for the PIC 16P84A given the following specification:

- Port B is an output port.
- The main routine increments the contents of the working register and outputs these contents to Port B.
- After updating Port B , the microcontroller should enter the sleep mode.
- Timer 0 generates an interrupt every 512 instruction cycles, causing exit of the sleep mode for one more update.
Your program should include all needed port and interrupt initialization.

```
;
    #include p16f84A.inc
;
    org 00
    goto start
;
    org 04
    goto Int_Routine
;
start
    bsf status,rp0 ;select bank 1
    movlw B'OOOOOOOO' ;set up TO for internal input,
        ; +ve edge, prescale by 2
    movwf TMRO
    movwf trisb ;portb bits all output
    bcf status,rp0 ;select bank 0
    bsf intcon,inte ;enable external interrupt
    bsf intcon,gie ;enable global int
;
wait
    addlw 01 ;increment
    movwf portb
    sleep
    goto wait
;
    org 0080
Int_Routine ;assume it awakes at TO interrupt
    bcf intcon,t0if ;clear TOIF
    retfie
    end
```

Problem 5: True or false problem: Circle \mathbf{T} if the statement is always true and circle \mathbf{F} if the statement is false. Also you need to correct the false statements.

T F Weak pull up resistors in I/O ports are used when the I/O port is configured as output. False. Correction: Weak pull up resistors in I/O ports can be used when the I/O port is configured as input.

T F Decoupling capacitors are used to smooth the voltage supply of the microcontroller when the power supply is not able to do that at certain times.
True.

T F For an 8 bit timer with its input clock of 4 MHz , the maximum time that can be measured assuming no scaling is 64 micro seconds.
True.

T F The WDT timeout depends on the external clock frequency.
False. Correction: The WDT timeout depends on its own RC clock.

Problem 6: Initialize the following two registers so that Timer 0 introduces a 100 -second delay. Assume using an external $160-\mathrm{Hz}$ crystal oscillator (show your calculations).

TMR0 Register
OPTION Register

Internal Frequency $=160 / 4=40 \mathrm{~Hz}$
$\mathrm{Tc}=\mathbf{1 / 4 0} \mathrm{s}$
$100 /(1 / 40)=4000$
$250 * 16=4000$
or $\quad 125 * 32=4000$
So we load TMR0 with 256-250 = 6 or 256 - 125 = 131
and use Prescaler of 16
or
32

$$
\text { TMR0 } \quad=(00000110)_{b} \quad \text { or } \quad(10000011)_{b}
$$

$$
\text { OPTION_REG }=(\mathbf{x x} 0 x 0011)_{b} \quad \text { or } \quad(x x 0 x 0100)_{b}
$$

Problem 7: The circuit shown to the right is connected at V_{I} to PIC16F84A's PORTA input. What are the constrains on R_{1} and R_{2} resistor values?

Given that Vs $=5 \mathrm{~V}$, Maximum VIH $=5.5 \mathrm{~V}$, Minimum $\mathrm{VIH}=2.4 \mathrm{~V}$, Maximum VlL $=0.8 \mathrm{~V}$, Minimum VIL $=0 \mathrm{~V}$, and $\mathrm{I}=1 \mu \mathrm{~A}$.
a)
$1 \mu \mathrm{~A} *(0.5 \mathrm{M} \Omega+\mathrm{R} 2 \mathrm{M} \Omega) \leq 0.8 \mathrm{~V}$

$0.5+\mathrm{R} 2 \leq 0.8$
$\mathbf{R} 2 \leq 0.3 \mathrm{M} \Omega$.
b)

5-2.4 = 2.6
$1 \mu \mathrm{~A}$ * $(0.5 \mathrm{M} \Omega+\mathrm{R} 1 \mathrm{M} \Omega) \leq 2.6 \mathrm{~V}$
$0.5+\mathrm{R} 1 \leq 2.4$
$\mathbf{R} 1 \leq 2.1 \mathrm{M} \Omega$.

Problem 8: Four bits of Port B of a 16F84 are to be used to drive four LEDs, and the rest four bits are to be used to receive inputs from four push button switches. For the input bits, the interrupt on change option is to be used. The microcontroller power supply is 5V. Each LED requires 15 mA when "ON" with forward voltage of 1.9 V . Two LEDs should be "ON" when their associated port bits are at logic 1, and two should be "ON" when their associated port bits are at logic 0 .
a) Show, using the diagram below to the left, how the switches and the LEDs may be connected?
b) Use the following output characteristics to calculate the values of any resistor needed.
c) Specify the contents of SFRs involved in this process.

Solutions:
a)

Bit allocation is shown. Push button inputs are connected to higher bits of Port B, as these have the interrupt on change facility. Pull-up resistors are not needed, as internal pullups will be used. LED locations are arbitrary in lower 4 port bits.
b) For the LEDs driven from logic 1: From the given characteristics figure we can see that for 15 mA of output current, the output voltage is around 3.7 V . Therefore,

$$
\boldsymbol{R}_{s}=\{(3.7-1.9) / 0.015\}=120 \Omega
$$

For the LEDs driven from logic 0: From the given characteristics figure we can see that for 15 mA current sink, the output voltage is around 0.5 V . Therefore,

$$
R_{s}=\{(5.0-1.9-0.5) / 0.015\}=173 \Omega
$$

The nearest preferred value is 180 Ohm.
c) Relevant SFR bits are:

- Msb of OPTION, set to 0 to enable internal pull-ups
- TRISB is set to 11110000 , i.e. upper 4 bits input, lower 4 output
- To enable interrupt on change, bits 7 and 3 of INTCON are set.

