Instructions: Time $\mathbf{2 0}$ minutes. Closed books and notes. No calculators. No questions are allowed.
Q1. Clock and D waveforms, one latch and two flip-flops are shown in the figure below. For the latch and each of the flip-flops, carefully sketch the output waveform, Q_{i}, obtained in response to the input waveforms. Assume that the propagation delay of the storage elements is negligible. Initially, all storage elements store 0 .

Q2. A sequential circuit has three D flip-flops A, B, and C, and one input X. The circuit is described by the following input equations:

$$
\begin{gathered}
\boldsymbol{D}_{\boldsymbol{A}}=(\overline{\boldsymbol{B}} \boldsymbol{C}+\overline{\boldsymbol{B}} \overline{\boldsymbol{C}}) \boldsymbol{X}+(\boldsymbol{B} \overline{\boldsymbol{C}}+\overline{\boldsymbol{B}} \overline{\boldsymbol{C}}) \boldsymbol{X} \\
\boldsymbol{D}_{\boldsymbol{B}}=\overline{\boldsymbol{A}} \\
\boldsymbol{D}_{C}=\overline{\boldsymbol{B}}
\end{gathered}
$$

(a) Derive the state table for the circuit.
(b) Derive two state diagram, one for $\mathrm{X}=0$ and the other for $\mathrm{X}=1$.

Present State			Next State (X=0)			Next State (X=1)		
A	B	C	A	B	C	A	B	C
0	0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	1	1
0	1	0	0	1	0	1	1	0
0	1	1	0	1	0	0	1	0
1	0	0	0	0	1	1	0	1
1	0	1	0	0	1	1	0	1
1	1	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0	0

$X=0$

$\mathrm{X}=1$

