Homework 2 Solution

Problem 1 (2 marks)

Find the complement of the following function:

$$
X+Y\left(Z+(X+Z)^{\prime}\right)
$$

Change every variable to its complement and exchange ands and ors.

$$
\begin{aligned}
F^{\prime} \quad & =\mathbf{X}^{\prime}\left(\mathbf{Y}^{\prime}+\left(\mathbf{Z}^{\prime}(\mathbf{X}+\mathbf{Z})\right)\right) \\
& =\mathbf{X}^{\prime}\left(\mathbf{Y}^{\prime}+\left(\mathbf{Z}^{\prime} \mathbf{X}+\mathbf{Z}^{\prime} \mathbf{Z}\right)\right) \\
& =\mathbf{X}^{\prime}\left(\mathbf{Y}^{\prime}+\mathbf{X} \mathbf{Z}^{\prime}\right)
\end{aligned}
$$

Or applying De-Morgan theorem multiple times.

$$
\begin{aligned}
\mathbf{F}^{\prime} & =\mathbf{X}^{\prime}\left(\mathbf{Y}\left(\mathbf{Z}+(\mathbf{X}+\mathbf{Z})^{\prime}\right)\right)^{\prime} \\
& =\mathbf{X}^{\prime}\left(\mathbf{Y}^{\prime}+\left(\mathbf{Z}+(\mathbf{X}+\mathbf{Z})^{\prime}\right)^{\prime}\right) \\
& =\mathbf{X}^{\prime}\left(\mathbf{Y}^{\prime}+\left(\mathbf{Z}^{\prime}(\mathbf{X}+\mathbf{Z})^{\prime \prime}\right)\right) \\
& =\mathbf{X}^{\prime}\left(\mathbf{Y}^{\prime}+\left(\mathbf{Z}^{\prime}(\mathbf{X}+\mathbf{Z})^{\prime \prime}\right)\right) \\
& =\mathbf{X}^{\prime}\left(\mathbf{Y}^{\prime}+\left(\mathbf{Z}^{\prime}(\mathbf{X}+\mathbf{Z})\right)\right) \\
& =\mathbf{X}^{\prime}\left(\mathbf{Y}^{\prime}+\left(\mathbf{Z}^{\prime} \mathbf{X}+\mathbf{Z}^{9} \mathbf{Z}\right)\right) \\
& =\mathbf{X}^{\prime}\left(\mathbf{Y}^{\prime}+\mathbf{X} \mathbf{Z}^{\prime}\right)
\end{aligned}
$$

Problem 2 (5 marks)
For the Boolean Function F , as given in the following truth table:

X	Y	Z	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

(a) List its minterms
$\mathrm{F}=\Sigma \mathrm{m}(0,1,3,5,7)$
(b) List its maxterms
$F=\Pi M(2,4,6)$
(c) List the minterms of F^{\prime}
$\mathrm{F}=\boldsymbol{\operatorname { m }}(2,4,6)$
(d) Express F in sum-of-minterms algebraic form
$F=X^{\prime} Y^{\prime} Z^{\prime}+X^{\prime} Y^{\prime} Z+X^{\prime} Y Z+X Y^{\prime} Z+X Y Z$
(e) Express F in product-of-maxterms algebraic form

$$
\mathbf{F}=\left(\mathbf{X}+\mathbf{Y}^{\prime}+\mathbf{Z}\right) \cdot\left(\mathbf{X}^{\prime}+\mathbf{Y}+\mathbf{Z}\right) \cdot\left(\mathbf{X}^{\prime}+\mathbf{Y}^{\prime}+\mathbf{Z}\right)
$$

Problem 3 (2 marks)
Draw the logic diagram for the following Boolean expression. The diagram should correspond exactly to the equation. Assume the complements of the inputs are not available.

$$
\mathrm{B}\left(\mathrm{~A}^{\prime} \mathrm{C}^{\prime}+\mathrm{AC}\right)+\mathrm{D}^{\prime}\left(\mathrm{A}+\mathrm{B}^{\prime} \mathrm{C}\right)
$$

Problem 4 (6 marks)
Optimize the following Boolean functions by means of Karnaugh map:
(a) $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\operatorname{\Sigma m}(0,2,3,4,6)$

(b) $\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma \mathrm{m}(0,2,5,6,8,10,13,14,15)$

(c) $\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\Sigma \mathrm{m}(2,4,9,12,15)$, with the don't-care conditions $\mathrm{d}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=$ $\Sigma \mathrm{m}(3,5,6,13)$

Problem 5

Implement the following Boolean function using NAND gates only: $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{X}^{\prime} \mathrm{Z}+\mathrm{Y}$

Problem 6 (2 marks)
Construct an exclusive-OR gate by interconnecting two three-state buffers and two inverters.

Problem 7 (6 marks)
Obtain the truth table of the following functions, and express each function in sum-of-minterms and product-of-maxterms form:
(a) $(\mathrm{AB}+\mathrm{C})(\mathrm{B}+\mathrm{AC})$

A	B	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$$
\begin{aligned}
& \mathrm{F}=\Sigma \mathrm{m}(3,5,6,7) \\
& \mathrm{F}=\Pi \mathrm{M}(0,1,2,4)
\end{aligned}
$$

(b) $\mathrm{ABC}^{\prime}+\mathrm{ABD}^{\prime}+\mathrm{ABD}+\mathrm{CD}^{\prime}$

\mathbf{A}	B	C	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

$F=\Sigma m(2,6,10,12,13,14,15)$
$\mathrm{F}=\Pi \mathrm{M}(0,1,3,4,5,7,8,9,11)$

Problem 8 (4 marks)

(a) Convert the following Boolean expression into SOP then into $S O M: \mathrm{X}^{\prime}+\mathrm{X}\left(\mathrm{X}+\mathrm{Y}^{\prime}\right)\left(\mathrm{Y}+\mathrm{Z}^{\prime}\right)$

$$
\begin{aligned}
& \mathbf{F}=\mathbf{X}^{\prime}+\mathbf{X}\left(\mathbf{X}+\mathbf{Y}^{\prime}\right)\left(\mathbf{Y}+\mathbf{Z}^{\prime}\right) \\
& =\mathbf{X}^{\prime}+\left(\mathbf{X X}+\mathbf{X} \mathbf{Y}^{\prime}\right)\left(\mathbf{Y}+\mathbf{Z}^{\prime}\right) \\
& =\mathbf{X}^{\prime}+\left(\mathbf{X}+\mathbf{X Y} \mathbf{Y}^{\prime}\right)\left(\mathbf{Y}+\mathbf{Z}^{\prime}\right) \\
& =\mathbf{X}^{\prime}+(\mathbf{X})\left(\mathbf{Y}+\mathbf{Z}^{\prime}\right) \\
& =\mathbf{X}^{\prime}+\mathbf{X Y}+\mathbf{X Z} \mathbf{Z}^{\prime} \quad \text { (SOP form) } \\
& =\mathbf{X}^{\prime}\left(\mathbf{Y}^{\prime} \mathbf{Z} \mathbf{Z}^{\prime}+\mathbf{Y}^{\prime} \mathbf{Z}+\mathbf{Y} \mathbf{Z}^{\prime}+\mathbf{Y} \mathbf{Z}\right)+\mathbf{X Y}\left(\mathbf{Z}^{\prime}+\mathbf{Z}\right)+\mathbf{X} \mathbf{Z}^{\prime}\left(\mathbf{Y}^{\prime}+\mathbf{Y}\right) \quad \text { Adding missing minterms } \\
& =X^{\prime} Y^{\prime} Z^{\prime}+Z^{\prime} \mathbf{Y}^{\prime} \mathbf{Z}+\mathbf{Z Y Z} \mathbf{Z}^{\prime}+\mathbf{X}^{\prime} \mathbf{Y Z}+\mathbf{X Y Z}{ }^{\prime}+\mathbf{X Y Z}+\mathbf{X Y} \mathbf{'}^{\prime} \mathbf{Z}^{\prime}+\mathbf{X Y Z}{ }^{\prime} \\
& =\mathbf{X}^{\prime} \mathbf{Y}^{\prime} \mathbf{Z}^{\prime}+\mathbf{Z}^{\prime} \mathbf{Y}^{\prime} \mathbf{Z}+\mathbf{Z Y} \mathbf{Z}^{\prime}+\mathbf{X}^{\prime} \mathbf{Y} \mathbf{Z}+\mathbf{X Y Z} \mathbf{Z}^{\prime}+\mathbf{X Y Z}+\mathbf{X Y} \mathbf{Y}^{\prime} \mathbf{Z} \text { Removing duplicates } \\
& =\mathbf{X}^{\prime} \mathbf{Y}^{\prime} \mathbf{Z}^{\prime}+\mathbf{Z}^{\prime} \mathbf{Y}^{\prime} \mathbf{Z}+\mathbf{Z Y} \mathbf{Z}^{\prime}+\mathbf{X}^{\prime} \mathbf{Y} \mathbf{Z}+\mathbf{X Y} \mathbf{Y}^{\prime} \mathbf{Z}^{\prime}+\mathbf{X Y Z} \text { ' }+\mathbf{X Y Z} \text { (SOM form) }
\end{aligned}
$$

(b) Convert the following Boolean expression into POS then into POM: $(A B+C)\left(B+A C^{\prime}\right)$

$$
\begin{array}{rlr}
\mathbf{F} & =(\mathbf{A B}+\mathbf{C})\left(\mathbf{B}+\mathbf{A C} \mathbf{C}^{\prime}\right) \\
& =(\mathbf{A}+\mathbf{C})(\mathbf{B}+\mathbf{C})(\mathbf{B}+\mathbf{A})\left(\mathbf{B}+\mathbf{C}^{\prime}\right) & \\
& =(\mathbf{A}+\mathbf{C})(\mathbf{B}+\mathbf{C})(\mathbf{A}+\mathbf{B})\left(\mathbf{B}+\mathbf{C}^{\prime}\right) \quad \text { (POS form) } \\
& =\left(\mathbf{A}+\mathbf{B}^{\prime}+\mathbf{C}\right)(\mathbf{A}+\mathbf{B}+\mathbf{C})\left(\mathbf{A}^{\prime}+\mathbf{B}+\mathbf{C}\right)(\mathbf{A}+\mathbf{B}+\mathbf{C})\left(\mathbf{A}+\mathbf{B}+\mathbf{C}^{\prime}\right)(\mathbf{A}+\mathbf{B}+\mathbf{C})\left(\mathbf{A}^{\prime}+\mathbf{B}+\mathbf{C}^{9}\right)\left(\mathbf{A}^{\prime}+\mathbf{B}+\mathbf{C}^{\prime}\right) \\
& & \text { Removing duplicates } \\
& =\left(\mathbf{A}+\mathbf{B}^{\prime}+\mathbf{C}\right)(\mathbf{A}+\mathbf{B}+\mathbf{C})\left(\mathbf{A}^{\prime}+\mathbf{B}+\mathbf{C}\right)\left(\mathbf{A}+\mathbf{B}+\mathbf{C}^{\prime}\right)\left(\mathbf{A}^{\prime}+\mathbf{B}+\mathbf{C}^{\prime}\right) \\
& & \text { Rearranging } \\
& =(\mathbf{A}+\mathbf{B}+\mathbf{C})\left(\mathbf{A}+\mathbf{B}+\mathbf{C}^{\prime}\right)\left(\mathbf{A}+\mathbf{B}^{9}+\mathbf{C}\right)\left(\mathbf{A}^{\prime}+\mathbf{B}+\mathbf{C}\right)\left(\mathbf{A}^{\prime}+\mathbf{B}+\mathbf{C}^{\prime}\right) \quad \text { (POM form) }
\end{array}
$$

